
中水水质必须要满足以下条件:
1.满足卫生要求。其指标主要有大肠菌群数、细菌总数、余氯量、悬浮韧、BOD5 等。
2.满足人们感观要求,即无不快的感觉。其衡量指标主要有浊度、色度、臭味等。
3.满足设备构造方面的要求,即水质不易引起设备、管道的严重腐蚀和结垢。 其衡量指标有pH 值、
硬度、蒸发残渣、溶解性物质等。
摘 要:建筑中水回用是城市污水再生利用的重要途径。我国已进入城镇化快速发展的时期,为建筑中水回用的开展创造了有利时机。经过近20年的积累和发展,我国自主研发的中水处理技术取得了长足进步,建筑中水回用技术储备已基本完成。建筑中水设施不同于排水设施和其它市政、环境设施,项目投资本身同时具有直接的经济效益和间接的经济效益以及可以相对定量的环境效益。目前建筑中水回用工作仍然面临严峻的挑战,突出表现在业主单位投资积极性不高、设施利用效率普遍不高、运行监管缺位、公众认知和接受程度不够。本文从建设和管理体制、规划及设计、施工及验收、运行监管、公众参与及社会监督等五个方面,对我国更好地开展建筑中水回用工作提出了建议,并展望了建筑中水回用的未来发展趋势。
摘 要:针对城市污水污泥中有机质的特性,介绍了污泥有机质的肥效利用、热能利用、有机质中碳的转化和生物利用等资源化技术。指出我国城市污泥中有机质资源化利用研究中存在的问题,并就相关问题对今后我国污泥中有机质的资源化利用提出了建议。
前言:污水处理厂污泥是污水处理的副产物, 其含水量高, 成分复杂, 不仅含有大量的有机质、、、等营养元素, 还含有大量的病原微生物, 并伴有恶臭,受工业废水影响, 往往还有较多的重金属等有毒、有害物质, 处理不当极易造成严重的二次污染。目前我国城市污水处理厂每年排放干污泥量约为万,而且还以每年大约的速度增长。如何合理地处置污水处理厂污泥, 解决大量污泥的出路已成为关系人类生态环境安全的一个重要问题。污泥中有机质的资源化技术是研究污泥处理处置技术的重要部分, 即利用物理、化学、生化等手段, 将污泥中有机质资源化加以利用, 同时最终达到使污泥稳定化、减量化和无害化的目的, 因此受到越来越广泛的重视。
摘要:系统地分析了目前印染污泥的主要处理和处置技术及其优缺点,并将“清洁生产”理念运用到污泥处置中,简要分析几种从源头上实现污泥减量化的新技术。
印染废水因含有大量的染料、浆料、表面活性剂和碱剂等组分,具有色度大、有机物浓度高、碱性强和水质水量变化大等特点,是极难处理的工业废水之一。目前对印染废水的处理基本采用物化法与生物法结合。活性污泥法是应用最为广泛的印染废水生物处理技术之一。该方法具有很多优点,但是会产生大量的剩余污泥,其污泥产量约占处理水量的0.3%~0.5%(含水率以97%计)。传统的污泥处理方法投资和运行成本非常巨大,其投资成本占污水处理厂总成本的12%~30%,运行成本占污水处理厂总运行费用的20%~50%,给污水处理带来沉重的负担。目前,污泥处置大多采用土地利用、堆肥、焚烧、卫生填埋和海洋倾倒等方法。这些方法都存在一定的弊端。针对中国印染废水生物处理中产生大量剩余污泥的现状,研究污泥减量化机理,以及开发高效、节能的污泥处置工艺,对解决印染污泥处置这个世界性难题无疑具有积极的意义。

污泥无害化处理是我国乃至全世界迫切需要解决的关键科技问题。本文针对我国污泥处理目前存在的问题与不足,以利用烟气余热污泥低温干化的发明技术为基点,将污泥无害化处理与节能减排两项环境目标结合在一起,提出了以废治废、废弃物再利用的污泥无害化、减量化和资源化处理途径。为促进我国城市污泥处理事业健康发展,本版特刊发此文,以飨读者。
污水处理厂污泥(简称城市污泥)是城市生活污水和工业废水在进行净化处理过程中产生的沉淀物质,是一类危害性极大的固体废弃物。如果不加以彻底处理与控制,将会对环境造成严重的二次污染。如何安全、经济地处理处置城市污泥成为世界共同面临的环境难题。
目前,我国大部分城市污泥出了污水处理厂后,便进入无序的临时堆存或简单填埋状态,不仅占用大量土地资源,而且严重破坏生态环境,特别是污泥中的污水侵入地下水,造成局部地下水资源难以复原的永久性危害。国外面临城市污泥处理难问题早于我国数十年,在长期实践中建立了污泥处理处置的方法。然而,由于我国国情与国外发达国家不同,国外的污泥处理处置方法难以在我国实施。
面对以上现实,开辟一条符合我国国情的污泥无害化、减量化、资源化处理的新途径势在必行,刻不容缓。
我国城市污泥的基本特征
■阅读提示
由于我国经济发展在地域上的不平衡,造成了各地城市污泥产生量的明显差异。城市污泥主要化学组成的含量在不同年份的变化是不大的,说明了污泥主要化学成分基本保持稳定。城市污泥因含有大量有机物质而具有较高的热值。
我国城市污泥具有以下基本特征:
污泥的地域分布特征。由于我国经济发展在地域上的不平衡,造成了各地城市污泥产生量的明显差异。就当前而言,城市污泥的产生量主要集中在东部地区。据统计,东部11个省(市)的污泥产生量占全国污泥总量的63.87%;中部8个省的污泥产生量占全国污泥总量的20.9%;西部12个省(市)的污泥产生量占全国污泥总量的15.23%。
但是,随着中部的崛起和西部大开发,以及国家环保“十一五”规划的实施,中、西部一些省(市)的污泥产生量不断增加,全国城市污泥平均增长率为16.82%,而中、西部的平均增长率分别高达23.29%和21.83%,因此,未来几年中、西部同样面临污泥处理的巨大压力。
污泥的成分特征。对典型城市污水处理厂污泥连续3年的监测表明,城市污泥主要化学组成的含量在不同年份的变化是不大的,说明了污泥主要化学成分基本保持稳定。其中,污泥的无机物含量占60%以上,污泥中有机物含量平均达到36%左右。
城市污泥中含有大量重金属,由于重金属不能被微生物分解,并可在生物体内富集,对生态环境的危害较大,因此重金属是污泥中主要的有毒有害物质。连续5年的监测表明,污泥中重金属含量随时间变化的范围很大,说明城市污泥中重金属含量随地区和时间的不同而变化,这主要与工业废水的来源和比例不同有关。
污泥的热值与含水率。城市污泥因含有大量有机物质而具有较高的热值。热值是城市污泥最有价值也是惟一可被资源化利用的部分,它与有机物质的含量成正相关关系。我国城市污泥有机质的含量一般在30%——45%之间,污泥所含的热值一般在1200——2500千卡/公斤。污泥热值是否具有可利用价值决定于污泥的含水率,只有当污泥含水率至少降至30%以下时,污泥的热值才具有利用价值。
污泥中的水以间隙水、毛细水、吸附水和结合水等不同的形态存在。污水处理厂通过浓缩过程可以去除大量间隙水,再经过机械脱水可以去除间隙水和部分毛细水,一般能使污泥含水率降至80%左右。含水率80%左右的污泥呈糊状,是需要彻底处理的对象,这时它只是有害的危险固体废弃物,不具有任何利用价值。
摘 要:随着我国城市污水处理厂的普及和运行,污泥的处理已成为我国城市发展过程中亟待解决的重大环境问题。通过分析污泥的产生和组成成分,着重介绍了污泥土地利用、污泥农用、填埋、焚烧、综合利用等处置方法,并对几种污泥处置方法进行对比分析,指出今后污泥处理处置的方向将以土地利用和热能利用为主,污泥填埋的比例将大幅度降低。
简介: 实施自来水厂排泥水处理,首先需要确定自来水厂的污泥量,就此将污泥量分为排泥水量和干污泥量。排泥水量可根据沉淀池排泥运行方式和滤池反冲洗运行方式来确定。对于干污泥量的确定介绍了计算法和物料平衡分析法,物料平衡分析法可作为计算法的补充,对计算法的结果进行校核。
关键字:自来水厂 排泥水 污泥量 污泥处理
0 概述
自来水厂排泥水含有大量来自原水的污染物,排泥水直接排放,会对地表水体造成污染。随着经济的发展和人们环保意识的提高,我国自来水厂排泥水处理已经提上议事日程。
实施排泥水处理,首先必须确定合理的污泥量,因为污泥量的确定直接影响整个排泥水处理工程的设计规模,从而影响到设备配置和投资规模。自来水厂的污泥量受多种因素影响,包括原水水质、水处理药剂投加量、采用的净水工艺和排泥的方式等。污泥量确定包括两方面内容:一是排泥水总量,它决定浓缩池规模;二是总干泥量,确定污泥脱水设备的规模。
污泥量确定一般需要较长时间数据的统计结果,因此即使目前没有建设排泥水处理工程计划的自来水厂,着手进行有关水厂污泥产量资料的收集工作仍然是明智之举。
1 排泥水总量确定
排泥水总量可分为沉淀池(或澄清池,下同)排泥水量和滤池反冲洗废水量两部分。
通常可以认为自来水厂一泵房取水量和二泵房出水量之间的差值即为自来水厂排泥水的总量。但它不能分别确定出沉淀池排泥水量和滤池反冲洗废水量,且这一估算方法不够准确。
已投产的自来水厂,根据水厂的有关运行参数可以较准确地计算出沉淀池排泥水量和滤池反冲洗废水量。水厂沉淀池采用人工定时排泥,只需根据每天排泥次数、每次排泥历时和排泥流量以及沉淀池格数,就可以计算出沉淀池的排泥水量。同样道理,也可以根据滤池每天冲洗次数、每次冲洗历时、冲洗强度及单格滤池面积和格数,计算出滤池反冲洗废水量。如果沉淀池排泥和滤池反冲洗实现了自动化运行,则需要对水厂沉淀池排泥和滤池反冲洗进行现场观测,了解沉淀池排泥和滤池反冲洗流量、每次历时和统计每天排泥或冲洗的次数,然后进行计算。
尚未建成或仍处在设计阶段的自来水厂,沉淀池排泥水量和滤池反冲洗废水量可根据沉淀池排泥和滤池反冲洗的设计参数进行估算,也可以参照已建成投产的、条件相近的自来水厂实际运行资料进行估算。
排泥水总量的确定,最好能绘制出排泥水量在一天内的变化曲线。由于水厂沉淀池排泥和滤池反冲洗都是在较短的时间内完成,瞬间流量很大,绘出变化曲线,对确定排泥水截留池和浓缩池设计规模有很大帮助。
2 干污泥产量确定
2.1 计算法
根据投加混凝剂在混凝过程中的化学反应、原水中悬浮固体对污泥量的贡献及其它污泥成份的来源,可以近似地计算出干污泥的产量。当硫酸铝用作混凝剂时,化学反应可简化为:
Al2(SO4)3·14H2O+6HCO3-=
2Al(OH)3+6CO2+14H2O+3SO42-(1)
由式(1)可知,氢氧化铝是形成污泥的主要产物。根据方程式的计量关系,投加1 mg/L的Al2(SO4)3·14H2O大约会产生0.26 mg/L的氢氧化铝沉淀物。原水中的悬浮物因为在混凝过程中不发生化学变化,它将产生相同重量的干污泥。其它水处理中的添加物,如高分子絮凝剂或粉末活性炭,也可认为以1∶1的比例产生污泥。
根据以上分析,可以建立干污泥量的计算公式。同样的分析也适用于铁盐作混凝剂的净水工艺。
日本水道协会[1]推荐采用(2)式计算干污泥量:
S=Q(TE1+CE2)×10-6(2)
式中S--干污泥量,t/d;
Q--自来水厂净水量,m3/d;
T--原水浊度,NTU;
E1--原水浊度与SS的换算率;
C--铝盐混凝剂投加率(以Al2O3计),mg/L;
E2--铝盐混凝剂(以Al2O3计)换算成干污泥量的系数,取1.53。
英国水研究中心[2]推荐用(3)式计算干污泥量:
S=2T+0.2C+1.53A+1.9F (3)
式中S--干污泥量,mg/L;
T--去除的原水浊度,NTU;
C--去除的原水色度,H;
A--铝盐混凝剂投加率(以Al2O3计),mg/L;
F--铁盐混凝剂投加率(以Fe计),mg/L。
美国Cornwell[3]推荐用(4)式和(5)式分别计算用铝盐和铁盐作混凝剂时的污泥产量:
S= 8.34Q(0.26Al+SS+A) (4)
S= 8.34Q(1.9Fe+SS+A) (5)
式中S--干污泥量,lb/d(1 lb/d=0.453 6 kg/d);
Q--自来水厂净水量,mgd(1 mgd=3.785×103 m3/d);
Al--铝盐混凝剂投加率(以Al2(SO4)3·14H2O计),mg/L;
Fe--铁盐混凝剂投加率(以Fe计),mg/L;
SS--原水总悬浮固体,mg/L;
A--水处理中其它添加剂,mg/L。
同时Cornwell推荐(6)式为原水浊度T与SS关系式:
SS=bT (6)
式中b--SS与浊度T的相关系数;
T--原水浊度,NTU。
Cornwell认为,在原水色度不高的情况下,b在0.7~2.2之间变化。综合以上3种计算公式,可知它们均出于同一思路,具有相似的形式,都要求测定原水浊度与SS的相关关系,这主要是因为SS的测定比较烦琐,自来水厂一般不对原水的SS做常规分析,而对原水浊度则有每天的记录。
2.2 混凝剂物料平衡分析法
该方法是根据自来水处理系统中混凝剂成份的物料平衡进行分析的。无论在净水过程中加入什么样的混凝剂,它在水处理系统中的物料进入和排出应该是平衡的。该法第一步,分析所用混凝剂中的铝(或铁)的实际含量,然后计算出净水过程中向原水加入铝(或铁)的投加率;第二步,获取自来水厂原水、沉淀池排泥水、滤池反冲洗废水和出厂水样品,并对这些样品进行铝(或铁)含量的分析;第三步,对排泥水平行样品进行总悬浮固体的分析。经过以上的分析,干污泥产量就可以计算出来。
例如,假设一个10万m3/d的自来水厂,由混凝剂投入原水的铝为5 mg/L,沉淀池排泥水分析测得总悬浮固体浓度为1.0%,其中铝的含量测得为400 mg/L。这里忽略原水、滤池反冲洗废水和出厂水中微量铝的影响,则每天加入净水系统的铝为: 10×104×103×5=5.0×108mg/d。
因为排泥水中含有400 mg/L的铝,则总排泥水量为1.25×106 L/d(5.0×108/400)或1250 m3/d,则干污泥量为1.25×104 kg/d(12.5 t/d)。
由于任何一种方法都难以准确地确定自来水厂的干污泥量,因此建议以两种方法所得到的结果进行相互校核。
3 原水浊度与SS相关性分析
计算法是应用较多的干污泥量确定方法,该方法需要确定原水浊度T与SS之间的相关关系。不同地域、不同水源及不同季节这个相关关系可能存在较大差异,因此建议每个自来水厂都对原水进行浊度T与SS相关关系的测定,测定的时间应尽可能长些,有一年以上的时间跨度。测定结果可以进行分月、分季度原水浊度T与SS相关关系分析。
Cornwell[4]列举了一个浊度T与SS相关关系的例子(见图1)。由图1可知,该测定结果有较强的相关性。

图1 Cornwell的原水浊度T与SS相关关系
图2和图3分别是作者对上海市A水厂和B水厂原水浊度T与SS相关性分析的结果,从图中可以看出,自来水厂原水浊度T和SS有较好的相关性。

图2 上海市A水厂原水浊度T与SS相关关系

图3 上海市B水厂原水浊度T与SS相关关系
从以上图中可以看出,不同水源水的相关关系存在较大差别。实际上,即使在同一水源,不同季节测定的相关关系也可能会有变化。
在测定浊度T与SS相关关系时,原水SS的测定必须认真仔细。因为部分滤纸能滤过的颗粒在混凝时则能够从水中去除,因此有条件的地方应采用0.45 μm的滤膜代替滤纸进行过滤,以提高测定的准确性。有很多水厂的原水浊度T和SS都很低(如湖泊、水库水),为了提高测定的准确性,SS测定时需要采集1 L甚至几L水样进行过滤。各自来水厂可以通过摸索后确定实际测定的水样量。
如果原水的色度很高,对污泥产量会存在影响。因为大多数原水的色度在滤纸过滤时不会被截留,而在水处理工艺中色度会被混凝、沉淀、过滤工艺去除,形成色度的物质也会存在于污泥中。在这种情况下,计算干污泥量时应考虑色度的影响。
4 自来水厂排泥水处理干污泥量设计值的选取
自来水厂干污泥产量随原水浊度、处理水量、混凝剂投加率变化,因此水厂的干污泥产量是一个变量。那么,选择怎样的干污泥产量设计值才是经济合理的呢?
一般可以用两种方法来确定自来水厂干污泥量设计值。一种方法是目前设计单位常采用的,就是通过试验分析原水浊度T和SS的相关关系,通过资料分析确定原水浊度的设计值和混凝剂投加率设计值,再结合水厂规模,根据计算公式算出干污泥量设计值。用原水浊度最大值和混凝剂最大投加率对设计值进行最不利情况校核。例如:试验得出B水厂原水浊度T与SS 的相关关系为:y=0.6x,考虑一定的安全系数,取浊度T和SS的比值为1∶1。该水厂原水浊度和混凝剂投加率分析分别见图4和图5。

图4 B水厂原水浊度统计分析结果

图5 B水厂混凝剂投加率统计分析结果
从图4可以看出,B水厂原水浊度主要分布在20~75 NTU之间,其中在40~45 NTU之间出现的概率最高。从累积概率曲线看,浊度65 NTU以下占近80%。因此取65 NTU作为浊度设计值。从图5可以看出,该厂混凝剂投加率主要在12~14 mg/L之间,投加率16 mg/L以下的累积概率在75%左右,因此取16 mg/L作为混凝剂投加量设计值。由于该厂是以Al2(SO4)3·18H2O计量混凝剂投加率,它与Al(OH)3的化学计量关系为0.234。另外,该厂去除色度约10 度,水处理规模为40万m3/d,根据以上数据可以计算该厂干污泥量的设计值:
S =4.0×10 8×(0.234×16+65×1+10×0.2)÷1.0×109
=28.3 t/d
该厂原水浊度最大值为109 NTU,混凝剂最大投加率为29.8 mg/L,则最大干污泥产量:
Smax =4.0×10 8×(0.234×29.8+109×1+10×0.2)÷1.0×109
=47.2 t/d
如果以28.3 t/d设计脱水设备,每天运行1班,则增加1班就可满足处理最大日污泥量的要求。
选取干污泥量设计值的另一种方法是根据水厂每天的处理水量、原水平均浊度及当天的混凝剂投加率,计算出每天的干污泥产量。然后对一定时间内日干污泥产量进行统计分析,就可以得到:平均每天的干污泥产量;最高日的干污泥产量;出现概率最高的干污泥产量范围。
如果脱水设备正常情况下每天运行1班,则干污泥产量设计值可以依据以下原则选取:
(1)该设计值必须大于平均每天的干污泥产量;
(2)该设计值要大于最高日干污泥产量的1/3;
(3)该设计值应不小于概率最高的干污泥日产量范围。
依据这三条原则确定的干污泥量设计值,当干污泥产量在最大概率的污泥日产量以下时,可以使污泥脱水在正常运行模式下完成。当干污泥产量超 过设计值时,可以通过以下途径解决:
(1)增加污泥脱水设备运行班次,直至每天24 h运行;
(2)通过排泥水处理工艺系统的平衡调节池贮存过量的污泥。
例如B水厂日干污泥产量分析见图6,其平均干污泥产量为12.66 t/d,最大干污泥产量为30.94 t/d。

图6 B水厂干污泥日产量分析结果
从图6可以看出,该厂干污泥日产量出现概率最高为8~10 t/d,有90%的概率是在18 t/d以下,如果选取18 t/d作为干污泥日产量的设计值完全符合上述选取原则,也可以满足处理要求。需要说明的是,以上所举两例,前一种方法计算干污泥量时每天的处理水量是以40万m 3/d进行计算的,后一种方法是以每天实际处理水量来进行计算的,由于实际处理水量不到40万m3/d,因此两者所选取的值差别较大。比较以上两种方法所得到的结果可知,前一种方法偏于安全。
上述方法确定的干污泥量设计值,既能保证排泥水处理的正常运转,又充分考虑了利用排泥水处理运行模式可挖掘的潜力,是经济可行的选取方法。
5 结论
(1)实施自来水厂排泥水处理工程,确定经济合理的污泥产量十分重要。
(2)污泥量确定包括排泥水量和干污泥产量,排泥水量决定排泥水处理工程中浓缩池规模,干污泥量则决定脱水设备规模。
(3)排泥水量需根据自来水厂沉淀池排泥方式和滤池反冲洗方式确定,相对较容易。
(4)干污泥量可用计算法和物料平衡分析法进行确定,其中计算法使用较多。建议用两种方法所得到的结果进行相互校核。
(5)计算法要求分析自来水厂原水浊度T与SS的相关性。研究表明,同一水源浊度T与SS均有一定的相关性,但不同水源间这一相关关系差别较大,因此每一水厂都应进行原水浊度T与SS相关性的分析。
(6)干污泥量设计值的选取有两种方法,一种方法是先选取原水浊度的混凝剂投加率的值,然后进行计算获得;另一种方法是先计算出一定时间范围内水厂每天的干污泥产量,然后分析得出干污泥产量设计值。前一种方法偏安全。
汽车作为现代化交通工具,给予了人们的生产与生活带来十分方便的同时,可是它的尾气排放物,给大气环境造成严重污染。我国某城市对该市的机动车辆尾气污染程度作了如下初步调查:该市目前拥有机动车辆13万辆,并以年增率15%的速度增加。机动车年排放一氧化碳4.4万吨,相当于该市工业企业一氧化碳排放量的46倍。市区主要交通道路中心点一氧化碳超标2倍以上的达65%,在车流量高峰之际,有的监测点一氧化碳浓度高达每立方米70mg,超标6倍。在车流量比较集中的火车站,氮氧化合物测点平均值为每立方米0.059mg,超标准0.18倍。这些数据充分说明:该市机动车尾气污染已上升为主要的大气污染,而过去以二氧化硫为主煤烟型污染转变为以一氧化碳、氮氧化物为主的机动车尾气污染和二氧化硫为主的煤烟型污染并重的格局。为此,一些城市政府会同有关部门,制定了相应的法规。广州市政府颁布《关于根本上销售使用含铅汽油的通知》、《广州机动车排气污染防治规定》。北京市政府相继出台《关于采取紧急措施控制北京大气污染的通知》、《关于进一步落实大气污染防治措施,努力改善环境质量的决议》,以及市环保局组织《实施北京市轻型汽车排气污染物标准》。这些地方性法规,主要是控制机动车尾气对大气环境的污染,还给广大市民一个洁净的大气生活空间。
1 汽车尾气的有害成份与危害
汽车排放的尾气,除空气中的氮和氧以及燃烧产物CO 2 、水蒸汽为无害成份外,其余均为有害成份。汽车发动机排放的尾气一部分毒性物质,是由于燃料不完全燃烧或燃气温度较低时发生较多。尤其是在次序起动、喷油器喷雾不良、超负荷工作运行。燃油不能很好地与氧化合燃烧,必定生成大量的CO、HC和煤烟。另一部分有毒物质,是由于燃烧室内的高温、高压而形成的氮氧化合物NO x (NO x 和NO和NO 2 的总称)。
然而上述的CO是一种无色无味有毒的气体,它不易与其它物质发生反应而成为大气成份中比较稳定的组成部分,能停留2~3年。当人们吸入过多的CO后,CO可与血液中的血红素结合,阻碍血液吸收氧气和输送氧气而中毒死亡。它引起的公害称为汽车尾气第一排气公害。
CH化合物中,特别是烯在大气上空,在太阳光紫外线作用下,会与氧化氮起光化反应生成臭氧、醛等烟雾状物质,刺激人们的喉、眼、鼻等粘膜。它不仅危害人们与动物,而且使生态环境遭到破坏,严重影响农作物的生长,近使农业减产,同时还具有致癌作用。它成为汽车尾气排放的第二公害。
MO x 是NO及NO 2 的总称,其中NO与血液中的血红素的结合能力比CO还强。容易使人们中毒而死亡。NO 2 是一种褐色有毒气体,有特殊刺激臭味,损害人的眼睛和肺部。它是产生酸雨和引起气候变化、产生烟雾的主要原因。成为汽车尾气的排放公害。
汽车尾气排放的颗粒物,一般是由直径为0.1~40 μ m的多孔性炭粒构成。它能粘附SO 2 及苯芘有毒物质,有臭味,对人们呼吸道极为有害(颗粒度较大的炭粒能迅速沉淀,不易从肺部排出)。
此外,铅化合物、硫化合物等等也为有害成分。
综上所述:汽车尾气排出的污染物,给予人类赖以生存的大气环境带来了严重的污染。在交通干线等人口密集区,其排气高度接近人体呼吸带,给人体健康造成了严重的危害。因此,必须采取有效措施,减少或者消除汽车尾气的排污量,是本文与大家共同研究与探讨的一个重要课题。
2 汽车尾气的净化处理技术
由于汽车运行严重的分散性和流动性,因而也给净化处理技术带来一定的限制。除了开发在机内净化技术外,还要大力开发机外净化处理技术。这应从两个方面入手:一是控制技术,主要是提高燃油的燃烧率,安装防污染处理设备和采取开发新型发动机;二是行政管理手段,采取报废更新,淘汰旧车,开发新型的汽车(即无污染物排放的机动车),从控制燃料使用标准入手。
2.1汽车燃油的改用
⑴ 采用无铅汽油,以代替有铅汽油,可减少汽油尾气毒性物质的排放量。
首先应抓汽车油的改用。以无铅汽油代替四乙基铅汽油。这种汽油是用甲荃树丁醚作渗合剂,它不仅不铅,而且汽车尾气排出的一氧化碳、氮氧化合物、碳氢化合物均会减少。目前,我国为了减少汽车尾气排放量,改善城区大气环境质量,国家规定从1999年7月1日起在全国范围内根本上使用含铅汽油。2000年7月1日起,市场根本上出售有铅汽油。因有铅汽油中,它加入了一种抗爆剂――四乙基铅,它具有很高的挥发性,甚至在0摄氏度时就开始挥发,而挥发出的铅粉末,以蒸气及烟的动工存在空气中。但铅的污染程度与交通密度(每小时通过的车辆数)以及汽油中铅的含量有密切关系。
虽然我国城市的交通密度比发达国家的密度低,但有铅汽油燃烧带来的铅的污染程度不可忽视。因铅是一种蓄积毒物,它通过人的呼吸、饮水、食物等途径进入人体。对人体的毒性作用是侵蚀造血系统、神经系统以及贤脏等。诸如对血管系统、生殖系统以及癌致畸等毒性作用也可能发生。
⑵ 掺入添加剂,改变燃料成分。
汽油中掺入15%以下的甲醇燃料,或者采用含10%水份的水-汽油燃料,都能在一定程度上减少或者消除CO、NO x 、HC和铅尘的污染效果。
若采用“甲醇燃料”,即采用甲醇和其它醇类同汽油混合所制成的燃料。当甲醇占比例30%~40%,汽车尾气排出的污染物可基本上消除。
⑶ 选用恰 当的润滑添加剂-机械摩擦改进剂。
在机油中添加一定量(比例为3%-5%)石墨、二硫化钼、聚四氟乙烯粉末等固体添加剂,加入到引擎的机油箱中,可节约发动机燃油5%左右。此外,采用上述固体润滑剂可使汽车发动机汽缸密封性能大大改善,汽缸压力增加,燃烧完全。尾气排放中,CO和碳氢含量随之下降,可减轻对大气环境的污染。
⑷ 采用绿色燃料同样可减少汽车尾气有毒气体排放量。
据美国的俄亥俄州某研究所用豆油与甲醇、烧碱混合,然后去除其中的甘油,从而可获得“大豆些油”。用“大豆柴油”,以3 ∶ 7的比例掺入到普通柴油中,可供柴油汽车之用。它可大大减少发动机工作时排放的硫化物、碳氢化合物、一氧化碳和烟尘。故誉作绿色燃料。
⑸ 采用多种燃料作为汽车燃料来源。
随着科学技术的发展和计算机的广泛应用,确保环境保护法规的实施和节能措施:汽车中可广泛使用新的配方汽油、电力、压缩的天然气体、太阳能以及生态燃料的蓄电池等等。然而在这种汽车上装上电脑,不断在行驶中早先调拨组合,以使汽车发挥最佳性能。采用计算机控制点火系统,以便对发动机的不同工况作出快速反应,可取得最佳 燃料经济性和发动机动力性能,可减少尾气对大气的污染。
⑹ 节约能源,有利环境,大力推广车用乙醇汽油。
根据有关专家指出,开发乙醇代替汽油,即节约能源,又可消化陈粮,使汽车排出的有害汽体减少,是一项有利于保护环境和资源的新课题。
如果按照1 ∶ 9的乙醇汽油配比,用20万吨乙醇,可配出约200万吨的乙醇汽油,200万吨的乙醇只消耗粮食70万吨。因此,发展、开发使用专用乙醇汽油可解决储存粮食的转化问题,又可以在一定的程度上代替汽油,缓解我国原油供应的紧张状况。因乙醇是一种小麦、玉米等原料生产的变性燃料乙醇和汽油以一定的比例混合而成的汽车燃料,已经列入“十五”发展计划,它与纯汽油比较,汽车尾气中一氧化碳量可降低1/3左右,碳氢化合物降低13.4%。此计划推广使用,将对改善城市大气污染,保障人民健康起到重要作用。
2.2汽车发动机内部的调试,可减少尾气污染物的排放量。
⑴ 减少喷油提前角。减少喷油提前角,可降低发动机工作的最高温度(1500摄氏度),使NO x 的生成量减少。
⑵ 改善喷油器的质量,控制燃烧条件(燃比、燃烧温度、燃烧时间),可使燃料燃烧完全,从而可减少CO、HC和煤烟。
⑶调整喷油泵的供油量,可降低发动机的功率,使雾化的燃料有足够的氧气进行完全燃烧,从而也可以减少CO、CH和煤烟的生成。
2.3发动机外部尾气净化措施
即汽车尾气由原有毒气体,变成为无毒气体,再排放到大气中。从而可减少对大气环境的污染。
⑴采用催化剂:将CO氧化成CO 2 ,HC氧化成CO 2 和H 2 O,NO x 被还原成为N 2 等。采用的催化剂有氧化锰-氧化铜;氧化铬-氧化镍-氧化铜等金属氧化物和白金属(铂)等贵金属。它们都可以净化CO、HC。催化反应器设置在排气系统中排气歧管与消音器之间。
⑵水洗:通过水箱,使汽车尾气中的碳烟粒子经过水洗和过滤及蒸气的淋浴,可支队粘在碳粒上的有毒物质,使碳粒子胀大而给予去除。
2.4发动机内部净化处理措施
⑴正曲轴箱通气系统的设计:把从汽缸窜入曲轴箱的气体(主要是未燃气体)再循环进入进气歧管,使其再次燃烧,改变了过去将其直接排入大气所造成的污染。
⑵排气再循环设计:发动机排气口用控制阀与进气歧管相连接,使排出的气体经过再次循环,以降低氮氧化物的排放量。
⑶蒸发排放控制系统的设计:将化油器浮子室中的汽油蒸发汽引入进气系统,而将油箱中的蒸发汽引入储存系统,可大大减少污染物的排放。
2.5加强行政管理,减少和消除汽车尾气对大气环境的污染
⑴淘汰旧车,采取报废迎新。开发并采用多种燃料的新型汽车,这是今后汽车的发展方向。以氢为燃料的电池电动车、太阳能汽车、电动汽车、复式汽车、液化气汽车、甲醇汽车等。它们是低公害、前途最佳的新型汽车。同时,目前也还可改装汽车发动机的汽车为柴油发动机汽车。虽然柴油发动机燃料费用高,但CO生成量少。如果对NO x 、粉尘排放量作相对的限制的话,那么柴油发动机汽车也是未来最佳汽车。
⑵严格执行国家质量技术标准,控制燃油标准。
按国家规定,不合质量的燃油不能使用,市场上不准出售低劣的燃油。然而汽车不准作用含铅汽油这一禁令已下,但难以奏效。其主要原因是广大市民对这一政策了解不足,含铅的70号和不含铅的90号及90号以上汽油,每吨差价比较大,加之无有效措施和得力宣传。另外,个别城市周边的地区又没有实行含铅汽油的禁令。市场调查结果显示含铅汽油库存数量还比较大,加之,车辆运输的流动性,故使得禁令难以实施。因此,对“禁令‘的宣传力度和推行力度应大大加强,才能保证大气环境的洁净。
3 结 语
为了保护自然环境和国家资源,防止汽车尾气对大气环境的污染而引起公害,保障人民生命安全与健康。国家特制定了环境质量标准,污染物排放标准、污染物控制标准等等。笔者认为:为了保证上述法规的实施,还可以从下面几个方面入手。
⑴实行车辆分流行驶:城市人口稠密区域,交通密度高,汽车尾气的排放在某一时间又比较集中,故会引起该地区域在某一时间内,大气污染的程度会急剧增加,造成危害人类的健康。这时可采取汽车分流行驶。一方面可解决交通堵塞、乘车难;另外还可使该局部区域大气环境污染程度有所减少,更好地贯彻大气环境质量标准的执行。
⑵一开辟地铁,施行电力牵引行驶。尤其在大城市人口稠密的地区,开辟地下通道,同时可解决乘车难问题以及减少大气环境污染。
⑶今后现代化的城镇建设,还应考虑自身的循环、多功能的结构形式。合理设计城市居民的日常生活完全以步代车,汽车只用在城外,城内的风能、太阳能、循环水等的高效利用也能使人们在很大程度上摆脱污染和不可再生资源的浪费。
⑷加强和提高人们对保护环境的意识-从自已做起,从家庭做起。
上述汽车尾气的排放是大气环境污染的一个重要组成部分。但是,个人与家庭的污染占大气环境污染源一定的比例。人们生活中制造的垃圾、废气、废水在人们享受便利的同时也使大气环境污染日益加剧,这是我们不可忽视的一部分。